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I. Introduction 
The goal of this activity is to provide insight into the ways modern science views the effects of 
temperature on chemical reactions, including especially thermally activated processes. Schematic 
diagrams of the type shown below, and used in lecture, have tremendous power when thinking about 
such processes at the molecular level.  
 

 
 
The diagram shows the energy associated with a thermally activated process in which a chemical 
system transitions between two states, labeled state 1 and state 2. State 2 is a stable state because it 
corresponds to the lowest energy configuration. State 1 is a metastable because, although it has higher 
energy than state 2, the system must overcome an activation barrier to transition from state 1 to state 
2. In many cases, the barrier is so high that the metastable state can exist for a very long time. For 
instance, diamond is a higher-energy form of carbon than graphite and so is, in principle, a metastable 
form of carbon. However, the barrier between the diamond and graphite form of carbon is so high 
that you are not in any danger of having your diamond necklace spontaneously convert into graphite. 
For chemical processes with lower barriers, transitions from metastable to stable states do occur and 
diagrams of the type above are the primary means through which scientists understand such 
processes. We will therefore begin by exploring the meanings of various features of the above 
diagram and how it is used to think about chemical processes. 

II. The reaction coordinate 
The first feature we will explore is the meaning of the x-axis in the above figure, which is known as 
the reaction coordinate Q. For a system to get from state 1 to state 2 it must follow some pathway. In 
most cases, we don’t have detailed information on the precise nature of this pathway, but it is 
nevertheless useful to imagine motion along a single dimension and consider the potential energy of 
the system as it moves along this path. The potential energy along the reaction coordinate is called 
the “energy landscape”. 
 
One example for which the pathway is easy to envision is the cis-trans isomerization shown below. In 
this case, Q is the dihedral angle about the double bond. The transition state occurs when the dihedral 
angle is about 90o. We can consider all angles <90o to correspond to the cis isomer (state 1) and all 
angles >90o to correspond to the trans isomer (state 2).  
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Our simulations will use a much simpler system, but one that retains the essentials of a thermally 
activated process. The system is that of the rectangular box demonstrated in lecture.  

 
 
Activity Try kicking the box over (with the upper kick button). Once it falls over, try kicking it back 
up (with the lower kick button). Notice the relation between the position of the box and the dot on the 
energy landscape.  
 
Q: What is the minimum kick needed to knock the box from the metastable to stable state (kick 1)? 
(Please give answer to 1 point past the decimal point.) 
 
Q: What is the minimum kick needed to knock the box from the stable state to the metastable state 
(kick 2)? (Please give answer to 1 point past the decimal point.) 
 
Q: Compare your results for the above minimum kicks to the three numbers above the energy 
landscape. These three numbers give the energy of state 1, the energy at the top of the barrier, and the 
energy of state 2. What is the relation between these numbers? 
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Notice the relation between the position of the box and the dot on the energy landscape. The 
landscape shows the gravitational potential energy of the system. What is Q for this system? What is 
state 1 and state 2? Which state is stable and which state is metastable? What does the transition state 
look like? 
 
Answer: The following shows the energy landscape for the box. The box has a metastable 
configuration, in which the box is standing on a short edge, and a stable configuration, in which the 
box is laying down on a long edge. To transition between these states, the box must stand up on a 
corner, which corresponds to the activated state.  

 
 
 

III. The energy landscape 
In this activity, we explore the factors that establish the energy landscape. 

 
Activity Try moving the “aspect ratio” slider and see what it alters.  
 
 
Q: For which aspect ratios is the reaction uphill in energy (energy of state 2 > energy of state 1)? For 
which aspect ratios is it a downhill reaction?  
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Q: The driving force of a reaction is the magnitude of the energy difference between states 1 and 2. 
For what aspect ratio is the driving force the greatest? For what aspect ratio is it easiest to knock the 
box over, i.e. requires the smallest kick1? 
 
This activity illustrates that the energy landscape is established by the structure of the system. For a 
chemical system, it is established by the molecular structure. For instance, if we replace the chlorines 
of the molecule shown in lesson 2 with flourines, we alter the energy landscape for the cis-trans 
isomerization. The van der Waals ratio (i.e. size) of Flourine is less than that of Chlorine. How do 
you think the energy landscape changes when you replace Cl with F?  
 
Answer: Since F is smaller than Cl, the steric interaction between F atoms is less than that between Cl 
atoms.  The metastable state for the fluorine substituted compound is then more stable, i.e. has lower 
energy, than that of the Cl compound, as illustrated below. 

 
 
Changing Cl to F is analogous to changing the aspect ratio of our box. For the box, we can choose 
any aspect ratio we want. For molecular systems, we often have discrete choices, such as choosing 
one of the halogens (F, Cl, Br, or I) or replacing an amino acid of a protein with another amino acid. 

IV. Population distributions 
In the above simulations, you determined the strength of kick needed to knock the box over or stand 
it up. Molecules are always being kicked by their surroundings, and the strength of these kicks is 
related to the temperature of the system. For molecules in solution, the kicks come from the 
surrounding solvent molecules. However, the details of the surroundings are not essential to making 
predictions of how the system will behave. In fact, we can just view the surroundings as a "heat bath" 
that exchanges energy (heat) with the system through random kicks.  
 
For our box, a good analogy of a heat bath is to consider placing the box on a shaking platform. The 
platform kicks the box randomly, with the strength of the kicks being set by the temperature of the 
heat bath. Before putting boxes on a shaking platform, let's consider placing balls on the platform. 
The height to which a ball rises after being kicked by the platform is an indication of how hard it was 
kicked. The average height of the balls is then an indication of the average strength of the kicks. 
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The balls on the upper platform can be viewed as being "activated", since they have higher energy 
than those on the lower platform. To denote this activation, the balls change their color to red when 
they transition to the upper platform.  
 
Activity Turn the temperature up to 700 and let the simulation run for a while. The populations on 
each of the platforms will change at first, and then reach a steady-state where the number of particles 
on the lower platform is 3 to 4 times greater than that on the upper platform. (Note that the 
populations will fluctuate quite a bit, with the number of particles on the upper platform going from 
about 14 to 28.) 
 
Q: Try lowering the temperature to 300. Let the simulation run for a while (so that the particles can 
reach thermal equilibrium). Is the average population on the upper platform larger or smaller than it 
was at T=700? 
 
 
The ratio between the number of particles in state 2 and the number in state 1 is equal to 

( )2 1

2

1

E E E
RT RTP e e

P

− ∆
− −

= =  

Where P2 and P1 are the “populations” of state 2 and state 1, i.e. the average number of particles in 
each of these states. 
 
Note that P2/P1 depends only on ∆E and RT. ∆E is the difference in energy between the two states, 
and RT is the thermal energy (i.e. a measure of the average kinetic energy of the particles, or in our 
example, the average height of the bouncing balls). To predict P2/P1, we don't need to know the 
detailed pathway between the states, we just need to know the difference in state energies and the 
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temperature. (The pathway can change how long it takes to reach thermal equilibrium, i.e. how long 
it takes the populations of the two platforms in our simulation to reach steady state.) 
 
If you watch the simulation for a while, you'll notice that every so often a ball gets a very strong kick 
from the platform. Although these strong kicks are rare, they are important since they give the system 
enough energy to make it to a high-energy platform. Even small increases in temperature can 
substantially increase the number of times a system gets a strong enough kick to reach a highly 
activated state, which would be represented here as a high energy platform. Try changing the 
temperature and noting how often a ball gets a strong kick. 

V. Motion at constant temperature, and exchange of energy with 
the heat bath 
 

 
 
Activity Increase the temperature of the system. What happens to the average height of the bouncing 
particles? Compare the average height of the bouncing balls on the upper platform to the lower 
platform. Are they different?  
 
You should have found that the average height of the particles on the two platforms is the same. This 
is an important aspect of molecular motion at constant temperature. The motion of particles is 
referred to as kinetic energy and temperature is a measure of the average kinetic energy of the atoms 
and molecules, 

 1Kinetic energy per degree of freedom = k T
2

 

where k is the "Boltzmann constant" with a value 1.3806503 x 10-23 J/K. (The units are Joules 
(energy) per Kelvin (degrees).) The heat bath ensures that the average kinetic energy of the particles 
is equal to 1/2 kT per degree of freedom. 
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Dynamics at constant temperature, i.e. on a shaking platform, is considerably different than everyday 
dynamics. Consider a ball bouncing on the above platforms. The height of the bounce sets the 
average kinetic energy of the ball. Suppose the ball falls off the upper platform and onto the lower 
platform, as shown below. 

  
When the ball falls to the lower platform, gravitational potential energy is converted into kinetic 
energy, so the degree of bouncing is higher on the lower platform than it was on the upper platform. 
This means the average kinetic energy of the ball has increased. Since temperature is directly 
proportional to the average kinetic energy, this means the temperature of the system has increased. 
 
In contact with a heat bath (shaking platform), energy will flow into or out of the heat bath to keep 
the system at constant temperature. The heat bath is constantly giving and taking kinetic energy from 
the ball, in such a way that the average height of the bouncing ball remains constant. When the ball 
falls off the platform, transitioning from state 1 to state 2, the potential energy decreases. This energy 
initially appears as an increase in kinetic energy, corresponding to an increase in temperature. The 
temperature of the ball is now higher than that of the heat bath (T>Tbath), so heat flows into the heat 
bath until the temperature of the ball becomes equal to that of the heat bath (T=Tbath). As heat flows 
into the heat bath, the kinetic energy of the ball decreases until the average height of the bouncing is 
equal to that the ball initially had on the upper platform. 

 
 
As the ball moves from state 1 (upper platform) to state 2 (lower platform), heat flows into the heat 
bath. The opposite is true for a transition from state 2 to state 1. Following the figure below from 
right to left, we see that as the ball transitions from the lower to the upper platform, it loses kinetic 
energy and its temperature drops below that of the bath. Heat then flow into the system from the heat 
bath, increasing the average kinetic energy so that the ball is now bouncing with the same average 
height it initially had on the lower platform. 
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Q: Supposed that the difference in energy between the upper and lower platform in the above 
diagrams is 5 kJ/mol. When the ball falls from the upper to lower platform, what is the flow of energy 
(both magnitude and direction) between the ball and the heat bath? 
  

VI. Thermally activated processes 
Above, we considered the number of molecules that will be on a high-energy vs. low-energy 
platform. In this activity, we explore the consequences of this on the rate of thermally activated 
processes. In the simulation, we will mimic the energy landscape with three platforms that represent 
the metastable, activated and stable states as shown below. 
 

                   
 

 
Activity The simulation starts with all of the balls in the metastable state.  
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Q: What happens to the number of activated molecules, i.e. balls on the activated platform, as you 
increase the temperature?  
 
Q: How does this affect the rate of the reaction, i.e. the rate at which balls reach the platform on the 
right that represents the stable state?  
 
In order to reach the stable state, a ball must first be activated by getting sufficient energy from the 
bath to reach the activated (middle) platform. Once on the activated platform, some balls will fall to 
the right onto the stable platform. The number of balls reaching the stable platform in a given time is 

then proportional to the number of activated molecules, which we saw above is proportional to 
aE

RTe
−

 
where Ea is the difference in energy between the activated and stable platforms. The rate of a 

thermally activated process is therefore proportional to 
aE

RTe
−

.  
 
If you watch the simulation for a while, you'll notice that every so often a ball gets a very strong kick 
from the platform. Although these strong kicks are rare, they are important since they give the system 
enough energy to make it to the activated state. Even small increases in temperature can substantially 
increase the number of times a system gets a strong enough kick to reach the activated state, 
represented here by the middle platform. Some thermally-activated processes take minutes or hours 
to occur. For instance, when you cook an egg, it takes a few minutes for the egg white to solidify and 
even longer for the yolk to solidify. On a molecular scale, the molecules are bouncing at about 1012 
times per second. If we were to use our simulation to model a reaction takes one second to occur, a 
ball would have to bounce an average of about 1012 times before it got a kick strong enough to knock 
it onto the activated platform.  

VII. Energy and temperature determine the populations 
Once a system reaches thermal equilibrium, the relative populations of two states is related only to 
the difference in energy between the states, ∆E, and the temperature T, through the relation P2/P1 = e-

∆E /kT. The details of the dynamics do not play a role. This next activity places the balls and the boxes 
on platforms that are shaking with the same temperature, which you can control with the slider bar. 
The two simulations are set to have the same number of states and state energies. 
 
The box has four states corresponding to the four sides of the box. There are two ways to stand up 
(two short sides) and two ways to lie down (two long sides). 
 
The bouncing ball simulation also has four states, corresponding to four platforms. Two platforms are 
at high energy (modeling the box standing up) and two are at low energy (modeling the box laying 
down). The narrow bar in the middle is present to model the transition state between the stable and 
metastable states.  
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Activity Compare the populations of the balls on the upper and lower platform, to the population of 
boxes standing up and laying down. Try changing the temperature. Note that although the population 
ratios P2/P1 reach similar values after long time, the time it takes to reach this steady-state (or 
equilibrium) condition is different for the two systems. This is because the steady state P2/P1 depends 
only on ∆E and T, however, the detailed manner in which the system reaches this steady state 
depends on the details of the dynamics.  
 
Consider the following two arrangements of platforms. The energies of the platforms are the same in 
both arrangements, but the order of the platforms is different. 
Arrangement 1                                         Arrangement 2 

       
 
 
Q: At thermal equilibrium, will the populations of the upper and lower energy platforms be the same 
for both arrangements?  
 
 
Consider the following two arrangements of platforms (The difference in energy between the 
platforms is the same in both arrangements. In the arrangement 2, both platforms have been raised to 
a high energy.) 
             Arrangement 1                                         Arrangement 2 
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Q: At thermal equilibrium, will the ratio of populations between the higher and lower platforms 
(P2/P1) be the same for both arrangements?   
 
At thermal equilibrium, the ratio between the populations of any two individual platforms is given 
by: 

 
( )2 1

2

1

E E E
RT RTP e e

P

− ∆
− −

= =  

Is there a temperature for which a higher energy platform can have a larger population than a lower 
population, i.e. can P2/P1 >1 when E2>E1?  
 
Answer: No. At low temperature, there will be more particles on the lower-energy platform. As we 
heat the system up, the population of the upper platform increases. At infinitely high temperature, the 
population of the higher-energy platform will become equal to that of the lower-energy platform 
(P2/P1 = 1), but P2/P1 will never be greater than one. This can be seen mathematically as: 

02

1

1
∆

−
−∞= = =

E
RP e e

P
 

Where we have used the fact that 1 0=
∞

. 

 

VIII. Entropy and free energy 
This simulation introduces entropy into the systems. The simulation extends the above two-
dimensional boxes to three dimensions, as shown in the middle panel below. Each box has six sides 
and the shape is such that there are four ways to stand up (have higher energy), and two ways to lie 
down (have lower energy). To mimic this in the bouncing ball simulation, we have created six 
platforms, four platforms with higher energy and two platforms with lower energy. 
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Activity Notice how the populations of the higher and lower energy states behave at different 
temperatures?  
 
Q: Is there a temperature at which the higher-energy state (the total population of the four higher-
energy platforms, or the total number of boxes standing up) has a larger population than the lower-
energy state (the total population of the two lower-energy platforms, or total number of boxes laying 
down)? 
 
You should have found that at high temperature, more boxes are standing up and most of the balls are 
on the upper platforms. Why does most of the population move to the higher-energy state? The 
concept we use to explain this is entropy. The summary explanation is: "Although energy prefers that 
the boxes lie down, entropy prefers that they stand up. At low temperature, energy wins and most 
boxes are lying down. At high temperature, entropy wins and more boxes are standing up." We will 
now examine this explanation in more detail. 
 
Entropy refers to the number of ways a system can be in a certain state. For the above rectangular box 
there are 4 ways to have high energy and only 2 ways to have low energy, so the entropy is larger in 
the higher energy state. We can summarize this with the following table: (We do not need to make a 
distinction between energy and enthalpy here, and so will use E and H interchangeably.) 
 
       Energy (E or H) Entropy (S) 
  Standing-up boxes/higher platforms     favored 
  Laying-down boxes/lower platforms  favored 
 
Or, equivalently, we can say the following reactions: 
 
 box laying down     box standing up 
 ball on lower 2 platforms    ball on upper 4 platforms 
 
entropy-driven but not enthalpy-driven. 
This interplay of energy and entropy is captured mathematically by the free energy: 
 
 G = H - T S        
 
Systems always favor the state with the lowest free-energy. We can understand the above expression 
for G as follows. Since the entropy is multiplied by temperature, T, entropy becomes more important 
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at high temperature. The energy and entropy terms have opposite sign (E vs. -TS) because systems 
prefer low energy and high entropy.  At low temperature, energy (H) dominates the free energy: most 
of the boxes are lying down and most of the balls are on the lower platforms. At sufficiently high 
temperature, entropy (-TS) begins to dominate: most of the boxes are standing up and most of the 
balls are on the upper platform. 
 
We will show below that we can include the entropy 
effects by replacing energy with free energy in our 
population expression: 

 
( )2 1

2

1

G G G
kT kTP e e

P

− ∆
− −

= =  

We include this in our reaction path diagram by 
labeling the y-axis with free energy, G, instead of energy, 
E.  
 

IX. Mathematical derivation of free energy 
Above, we used the expression 

2

1

E
kTP e

P

∆
−

=  

for the ratio of populations between two states. This ratio holds between any two specific states, such 
as individual platforms for the bouncing balls, or individual sides on which the box can stand: 

 a short side

a long side

E
kTP e

P

∆
−

=  

(A box is standing up if it is standing on a short side of the rectangular box, and is lying down if it is 
standing on a long side.) 
 
We will refer to these specific states (a box standing on a specific side) as configurations. Now 
suppose that we want to group configurations together into states such as "box standing up" and "box 
lying down". For the three-dimensional box of the previous section, four configurations are grouped 
into the "box standing up" state and two configurations are grouped into the "box lying down" state. 
The total population of boxes standing up is a sum of the populations in the four standing-up 
configurations, and since these states have equal energy, they have equal populations: 
 
   Pall standing-up configurations = Pshort side 1 + Pshort side 2 + Pshort side 3 + P short side 4 = 4 Pa short side 
 
Similarly, the total population of boxes lying down is 
 
   Pall lying down configurations = Plong side 1 + Plong side 2 = 2 Pa long side 
 
The ratio is then 
 

 all standing-up configurations a short side

all lying-down configurations a long side

4 4
2 2

E
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P P e
P P

∆
-

= =  
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More generally, we can write that the population between two states is 

( )2 1
2 2 2

1 1 1

E EE
kT kTP e e

P

−∆
− −Ω Ω

= =
Ω Ω

 

where Ωn is the number of configurations grouped together to make the state. 
For our box example, Ω2 =4 (the number of ways the box can stand up) and  Ω2 =2 (the number of 
ways the box can lie down).  
 
Q: Consider a box with dimensions as shown below. Suppose the difference in energy between the 
box standing up and laying down is ∆E. What is the ratio between the total pollution of boxes 
standing up versus laying down, Pstanding up/Playing down, at a given temperature T. 

 

1

5
5

 
 
 
 
We can get from the expression: 

2 2

1 1

∆
−Ω

=
Ω

E
kTP e

P
 

 to free energy through the following mathematical manipulations. First, we re-write the above ratio 
as 

( )2 1 2
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If we want the effects of Ω to be comparable to the effects of energy, we need to move Ω into the 
exponential. Since ln and exp cancel one another, we can write 

ln=e ΩΩ  
We also want to have kT in the denominator of the exponent, so we multiply and divide by kT 

lnkT

=e kT
Ω

Ω  
If we define entropy S as k ln Ω, then the above becomes 

=e
T

T
S

kΩ  
We can now put this back into the population ratio to get 
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Combining the exponentials together (recall that exey = ex+y), 
2 2 2
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Where we have used G = E - TS. This leads us to the result we introduced at the end of the previous 
section: when you group configurations together into states, the energy should be replaced with the 

Entropy online activity: accompanying handout Page 14 



09-106 Modern Chemistry II  Carnegie Mellon University 
 
free energy. It also gives us a molecular-level definition of entropy: S = -k ln Ω, the formula 
inscribed on Boltzmann tombstone (Boltzmann rightly considered this expression the ultimate 
achievement of his life's work, the ability to connect the entropy 
measured in thermodynamic experiments on macroscopic systems to 
the atomic/molecular world.)  
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