Chemistry in the field and chemistry in the classroom: A disconnect?

July 20, 2004 18th BCCE - Iowa State University

Karen L. Evans & Gaea Leinhardt LRDC, University of Pittsburgh Michael Karabinos & David Yaron Department of Chemistry, Carnegie Mellon University

Pedagogical Organization of Academic Chemistry: Established Content and Process

Analytical chemistry
Biochemistry
Inorganic chemistry
Organic chemistry
Physical chemistry
Theoretical chemistry

2

But "frontier science," which reflects the creativity and progress in academic and industrial research and development, occurs across such boundaries:

"...its [chemistry's] methods, concepts, and practitioners are penetrating virtually every nook and cranny of science and technology." ----I. Amato (Science, 1991)

1

- What are the current valued activities of chemistry?
- ✤Is the fundamental organization of the textbook based vision of chemistry up to date?

4

Testing the Framework

- Are some activities missing from the framework?
- Are some activities present in the framework but not in the domain of chemistry?

Evidence for the Domain of Chemistry Represented in the Conceptual Framework

*Nobel Prizes (1952-2002)

- 2002 New York Times Science Times (54 reports)
- 2002 Scientific American News Scan (32 reports)

9	Textbook Coverage during a First High School Chemistry Course								
	Measure	Modern	Merrill	Chem Com					
	# pages	599	648	484					
	% of pages covered	66%	58%	100%					
	# objectives	291	195	120					
	% objectives covered	65%	53%	100%					
	-			12					

Hypothesis Generation Themes: News Reports vs. Textbook Objectives							
Theme	News Reports	Merrill Chem	Modern Chem	ChemCom			
Reaction Type	25%	4%	14%	24%			
EM & Prop. of Atoms & Molecules	31%	10%	12%	13%			
Stoichiometry	2%	6%	7%	5%			
Prop. of Matter	23%	51%	44%	24%			
				19			

Hypothesis Generation Themes: News Reports vs. Textbook Objectives, cont.'

Theme	News Reports	Merrill Chem	Modern Chem	ChemCom
Periodicity	1%	18%	15%	2.5%
Equilibrium & Kinetics & Thermo	8%	8%	4%	17%
StructProp. Relationships	11%	0	%1	14.5%
				20

Effects of the Disconnect

- Educational goal of a coherent knowledge base <u>not met</u> since a "skills-first" agenda yields inert knowledge that is rarely usable or memorable.
- Educational goal of basic scientific literacy <u>not met</u> since current instruction ignores 2/3 of the domain of chemistry.

23

Beginning students are <u>not engaged</u> in the wonder and excitement of the discovery and creativity at the heart of chemistry.

"Repairing" the disconnect: Use evidence in deciding what to teach

- Realize that most students do not study any chemistry after high school.
- Introduce tools and skills on a need-to-know basis
- Emulate the domain's valued activities in instruction by provding scaffolded problem-solving scenarios situated within the context of frontier science storylines*

* Using and Authoring Virtual Lab Activities for Introductory Chemistry. A workshop presented Wednesday at 2 PM by David Yaron and Michael Karabinos, Carnegie Mellon University (http://ir.chem.cmu.edu) ²⁴