

Learning challenges and interventions

- Promoting flexibility and applicability
 - From mathematical procedures to chemical phenomena (use in chemistry)
 - Virtual laboratory
 - From chemical phenomena to real world (*transfer to real world*)
 - Scenario based learning
- Promoting coherence
 - "Big picture" of chemistry

Virtual lab problem types

- · Predict and check
- Virtual experiment
 - Puzzle problems (open-ended and inquiry based experiments)
- · Layered problems

Predict and Check

The Chemistry Collective http://www.chemcollective.org BCCE 2004

Students use the virtual lab to check the results of a penciland-paper calculation or qualitative prediction

- Potential benefits
 - Encourages students to see connection between calculations/qualitative predictions and an experimental procedure
 - Design of the appropriate experiment can be challenging
 - Observations indicate that the shift from paper and pencil to lab activity can be difficult for students
- Students can make use of intermediate results in locating errors
 The Chemistry Collective http://www.chemcollective.org BCCE 2004

Predict and Check

Traditional calculation

Coffee: Calculate the amount of 10⁹C milk that must be added to 250ml of 95°C coffee to lower its temperature to 90°C. Check your answer in the virtual lab.

· As part of design activity

Camping 3: Using the virtual lab, create two solutions, initially at 25°C, that, when mixed together in equal volumes, cause the temperature of the mixture to increase from 25°C to 60°C

Can be done as predict and check, but is often done in iterative process with some predict and check steps

Virtual Experiments

Students generate and interpret data in the chemistry virtual lab program

Typical textbook problem "When 10ml of 1M A was mixed with 10ml of 1M B, the temperature went up by 10 degrees. What is the heat of the reaction between A and B?"

Virtual Lab problem Camping 1: "Construct an experiment to measure the heat of reaction between A and B?"

· Students who could perform the textbook procedure had difficulty designing the experiment, and needed help from a human tutor.

- The procedure is not triggered in response to relevant prompt - The Virtual Lab format prevents students from using strategy of matching words to equations

The Chemistry Collective http://www.chemcollective.org BCCE 2004

Puzzle Problems

Oracle: Given four substances A, B, C, and D that are known to react in some weird and mysterious way (an oracle relayed this information to you within a dream), design and perform virtual lab experiments to determine the reaction between these substances, including the stoichiometric coefficients. You will find 1.00M solutions of each of these chemical reagents in the stockroom.

The Chemistry Collective http://www.chemcollective.org BCCE 2004

Oracle Problem Observations

- · Intent was to give practice with determining reaction coefficients A + 2B → 3C + D
- · Observation
 - When A is mixed with B, some A remains, so the reaction must be: $\mathsf{A} + \mathsf{B} \xrightarrow{} \mathsf{C} + \mathsf{D} + \mathsf{A}$
 - Reveals misunderstanding of limiting reagent concept (even though they could easily perform textbook limiting reagent problems)
- · This may be a good opportunity for an Elicit-Confront-Resolve instructional strategy

The Chemistry Collective http://www.chemcollective.org BCCE 2004

3

Layered Problems

- A set of activities involving the same chemical system, but modeling the system with varying levels of complexity and approximation.
- The approximations can either be removed or invoked as one moves through a series of problems.
- These interconnected layers, particularly with the addition of structured debriefing, invite students to reflect on how the removal or an addition of an assumption changes both their problem solving approach and the predicted results.

The Chemistry Collective http://www.chemcollective.org BCCE 2004

Observational studies: Qualitative reasoning

- Challenge problem involving multiple interacting chemical equilibria (a weak acid dye binding to DNA)
- Student strategies were much more sophisticated than instructors anticipated based on students' ability to manipulate these concepts algebraically
- Suggests the new manipulatives of the virtual lab have potential for supporting and assessing qualitative understanding

The Chemistry Collective http://www.chemcollective.org BCCE 2004

Layered Problems

- Acid Mine Drainage Scenario treats river at three levels
 - As distilled water at room temperature
 - As distilled water with seasonally-varying temperatureAs a buffered solution
- For all three models, student predicts amount of Fe
 precipitated in the river bed

Authoring a virtual lab activity

- Add chemical species and reactions (if desired)
- Can create "fictional" proteins, drugs etc.
- Create Stockroom Solutions
- Specify available functionality
 - Viewers
 - For example, turn off "Solution Contents" for exercises involving unknowns

The Chemistry Collective http://www.chemcollective.org BCCE 2004

- Transfer mode
- · HTML problem description can be included

Transfer to real world: Scenarios

· Scenario based learning

- Embed the procedural knowledge of the course in a scenario that highlights its utility
- Scenarios that touch down at various points in the course may promote coherence

Outcome of design process

 Attempt to organize scenario development led to a "concept map" of the domain

The Chemistry Collective http://www.chemcollective.org BCCE 2004

7

Scenarios: Examples

- Mixed reception (molecular weight, stoichiometry)
- Cyanine dyes binding to DNA (equilibrium, Beer's law)
- Meals read-to-eat (thermochemistry)
- Mission to mars (redox, thermochemistry)
- Arsenic poisoning of wells in Bangladesh (stoichiometry, titration, analytical spectroscopy)
- Ozone destruction (kinetics)

	Prelimin	ary da	ita	
Student survey	S (data is % res	sponse)		helpful
Lectures	0	10	33	40
Reading	8	34	25	10
Textbook problems	10	33	25	7
Graded HW	5	7	34	37
Vlab	10	18	28	25
Recitation	2	16	30	34
 Attitude towards (R²=0.82) Confidence does 	virtual lab corre s not correlate to	lates stro perform	ngly with cor ance (R ² =0.0	nfidence measures
e Chemistry Collective	http://www.	http://www.chemcollective.org		

Preliminary results

Final exam

Final constructed to have 8 items parallel to past years and 2 items that were more difficult; student averages went up 6 points.

- · Correlations
 - Effort spend on Virtual Lab problems in third segment of course was correlated with score on most recent hour exam(R=0.21,p<0.05)

 - Effort spend in layered problem on acid mine drainage is correlated with score on pre-exam 3 (R=0.31, p<0.001)
- Critical thinking
 - Based on 2 videos of student problem solving (of 9 total)
 - Problem functions differently for low and high performance group, but both engage in critical thinking
- Nature of critical thinking varies depending on whether students are at boundary of their domain knowledge -The Chemistry Collective http://www.chemcollective.org BCCE 2004

- · Fully online course for stoichiometry
 - Replaces current mastery exam system in first semester freshman chemistry course at Carnegie Mellon
 - Implemented in Carnegie Mellon's Open Learning Initiative (OLI) system (allows full trace analysis)
 - Within and between subject controls

Off-Site Assessment Studies

The Chemistry Collective http://www.chemcollective.org BCCE 2004

Setting

- University of British Columbia
- Studies compared student performance in a course using the virtual lab to that from previous years.
- Success rates (% students scoring above 75% on exam)
 - Calculations in volumetric analysis: from 30% to 90%
 - Knowledge of analytical glassware: from 30% to 95%

The Chemistry Collective http://www.chemcollective.org BCCE 2004

Current dissemination strategies

- Web site (<u>http://ir.chem.cmu.edu/</u> and <u>http://www.chemcollective.org</u>)
 - 1000 page requests per day, 125 instructors on mailing list, 36 requests to become test sites next year
 - >10,000 students have performed one or more activity in the virtual lab
- Booths at conferences
 - Demonstrate materials for about 75 instructors per day of 3 to 4 day conference

The Chemistry Collective http://www.chemcollective.org BCCE 2004

10

- · Build community around a specific educational goal
 - Digital Libraries can combine expertise through remote and asynchronous collaboration
- Digital Libraries can support an iterative development process · Ways to participate
 - Use activities and give feedback
 - Participate in assessment studies
 Modify and create activities

 - Discussions around activities and topics

For more information on the ChemCollective, please see: S418 Using Digital Libraries to Build Educational Communities:The ChemCollective [Tues 1:35 Scheman 179] or stop by our booth #63 in the exhibition hall.

