http://ir.chem.cmu.edu/mars/



A Carnegie Mellon–ITESM Collaboration © 2000, The IrYdium Project

## MEMORANDUM

**To:** Mission Critical Chemistry Team Members

CC:

From: Director of Chemistry Subdivision

Date: October 16, 2003

Re: Fuels

The chemistry team assigned to the Mission Critical Chemistry project has synthesized three powerful oxidants for use in the new fuel system. These have been code named  $O_a$ ,  $O_b$ , and  $O_c$ . Solutions of each of these oxidants, with concentrations of 0.1M, are available in the laboratory simulator at the project web site (<u>http://ir.chem.cmu.edu/mars</u>/). We have also put a 0.1M solution of one of our standard reducing agents,  $R_s$ , in the laboratory. This reductant has been well characterized over the past few years, and we know the following heats of formation:

 $H_{f}^{o}(R_{s}) = 233.9 \text{ kJ/mol}$   $H_{f}^{o}(R_{s}^{+}) = 13.4 \text{ kJ/mol}$ 

We have also done some initial physical characterization of the oxidants, and the results are reported in the following table:

| Compound       | Molecular<br>weight<br>(g/mol) | Density<br>(g/cm <sup>3</sup> ) | Heat Capacity<br>(cal/g K) |
|----------------|--------------------------------|---------------------------------|----------------------------|
| O <sub>a</sub> | 32.1                           | 1.65                            | 0.68                       |
| Ob             | 64.2                           | 0.51                            | 0.59                       |
| Oc             | 71.5                           | 1.52                            | 0.44                       |

The project web site contains a *User Guide* for the Virtual lab that describes most of the available features. In addition, the lab now includes a thermometer (above the pH meter) and the tools menu includes a Bunsen burner.

Note that you may assume that the thermodynamics of the reactions in water are identical to those that occur in the rocket engines.