http://ir.chem.cmu.edu/mars/

A Carnegie Mellon–ITESM Collaboration © 2000, The IrYdium Project

MEMORANDUM

To: Mission Critical Chemistry Team Members CC:

From: Director of Chemistry Subdivision

Date: October 16, 2003

Re: Fuels

The chemistry team assigned to the Mission Critical Chemistry project has synthesized three powerful reductants for use in the new fuel system. These have been code named R_a , R_b , and R_c . Solutions of each of these reductants, with concentrations of 0.1M, are available in the laboratory simulator at the project web site (<u>http://ir.chem.cmu.edu/mars/</u>). We have also put a 0.1M solution of one of our standard oxidizing agents, O_s , in the laboratory. This oxidant has been well characterized over the past few years, and we know the following heats of formation:

 $H_{f}^{o}(O_{s}) = 395.7 \text{ kJ/mol}$ $H_{f}^{o}(O_{s}) = 30.2 \text{ kJ/mol}$

We have also done some initial physical characterization of the reductants, and the results are reported in the following table:

Compound	Molecular weight (g/mol)	Density (g/cm ³)	Heat Capacity (cal/g K)
R _a	84.3	1.41	0.57
Rb	34.5	1.36	0.23
R _c	61.2	0.53	0.89

The project web site contains a *User Guide* for the Virtual lab that describes most of the available features. In addition, the lab now includes a thermometer (above the pH meter) and the tools menu includes a Bunsen burner.

Note that you may assume that the thermodynamics of the reactions in water are identical to those that occur in the rocket engines.